2021-09-23

OpenCV DTrees

下面是用來測試 tcl-opencv 新加入的 DTrees command,寫了一個簡單的測試程式來測試:

package require opencv

proc showImage {image columns name} {
    set bigImage [cv::Mat::Mat 0 0 $::cv::CV_32F]

    for {set i 0} {$i < [$image rows]} {incr i} {
        set row [$image rowRange $i [expr $i + 1]]
        set rs  [$row reshape 0 $columns]
        $bigImage push_back $rs

        $row close
        $rs close
    }

    set bigImageT [$bigImage transpose]
    ::cv::imshow $name $bigImageT

    $bigImageT close
    $bigImage close
}

#
# Download file from:
# https://github.com/opencv/opencv/tree/master/samples/data/data01.xml
#
set filename "data01.xml"

set f [::cv::FileStorage]
$f open $filename $::cv::FileStorage::READ
set dataMat [$f readMat datamat]
set labelsMat [$f readMat labelsmat]
$f close

set data [$dataMat convert $::cv::CV_32F]
set labels [$labelsMat convert $::cv::CV_32S]
puts "Loading training data... read [$data rows] rows of data"

$dataMat close
$labelsMat close

set data_train [cv::Mat::Mat 0 0 $::cv::CV_32F]
set data_test  [cv::Mat::Mat 0 0 $::cv::CV_32F]
set labels_train  [cv::Mat::Mat 0 0 $::cv::CV_32S]
set labels_test   [cv::Mat::Mat 0 0 $::cv::CV_32S]

for {set i 0} {$i < [$data rows]} {incr i} {
    if {[expr $i%2]==0} {
         $data_train push_back [$data rowRange $i [expr $i + 1]]
         $labels_train push_back [$labels rowRange $i [expr $i + 1]]
    } else {
         $data_test push_back [$data rowRange $i [expr $i + 1]]
         $labels_test push_back [$labels rowRange $i [expr $i + 1]]
    }
}

$data close
$labels close

showImage $data_train 28 "train data"
showImage $data_test 28 "test data"
cv::waitKey 0

set dt [::cv::ml::DTrees]
$dt setMaxCategories 2
# It is necessary to setup max
$dt setMaxDepth 20
$dt setMinSampleCount 1
$dt setTruncatePrunedTree 1
$dt setUse1SERule 1
$dt setUseSurrogates 0
$dt setCVFolds 1

puts "Training..."
set trainData [::cv::ml::TrainData $data_train $::cv::ml::ROW_SAMPLE $labels_train]
$dt train $trainData
$trainData close
$data_train close
$labels_train close

$dt save "dt.xml"

puts "Predicting..."
set response [$dt predict $data_test]
set res [lindex $response 1]

$dt close

puts ""
puts "Labels test: "
for {set i 0} {$i < [$labels_test rows]} {incr i} {
    puts -nonewline "[$labels_test at [list $i 0] 0] "
}
puts ""
puts "Response: "
set res2 [$res convert $::cv::CV_32S]
for {set i 0} {$i < [$res2 rows]} {incr i} {
    puts -nonewline "[$res2 at [list $i 0] 0] "
}

puts ""
set correct 0
for {set i 0} {$i < [$labels_test rows]} {incr i} {
    if {[$res2 at [list $i 0] 0]==[$labels_test at [list $i 0] 0]} {
        incr correct
    }
}
puts "accuracy: [expr 100 * $correct/[$labels_test rows]]"

$res close
$res2 close
$data_test close
$labels_test close

沒有留言: